Octave-GTK: A GTK binding for GNU Octave

Muthiah Annamalai, Hemant Kumar,C Ramasamy,R Saravana Manickam,Leela Velusamy*
National Institute of Technology - Tiruchirapalli, India
email: {ec10180,cl10112,cl10120,me10143,leela} @nitt.edu

25" November 2004

Abstract: Language binding, is a favorite solu-
tion for programming language interoperability prob-
lems, that helps extend the reuse of libraries, and save
developer’s time, all the same providing new function-
ality to the host language . In this paper, we discuss
the problems faced with interoperability between two
programming languages, with respect to GNU Octave,
and GTK API written in C, to provide the GTK API
on Octave as a part of Octave-GTK, our research
project. Octave-GTK is the fusion of two different
API’s exported by GNU Octave [scientific computing
tool] and GTK [GUI toolkit], to use GTK primitives
within GNU Octave, to build graphical front ends,at
the same time using octave engine for number crunch-
ing power. Octave GTK, is a GTK binding for Oc-
tave. The concept of binding is prevalent in the world
of free software, and this paper illustrates our imple-
mentation this technologies, and binding logic. Also
shown, are methods of code generation, binding au-
tomation, and the niche we plan to fill in the absence
of GUI in Octave. Canonical discussion of advan-
tages, feasibility and problems faced in the process are
elucidated. 1

General Terms: GNU,Language Interoperability,
Library reuse, Software Engineering

Keywords: Free Software,Language binding,
Interoperability, Octave-GTK, Code Generator

1 Aims

Octave GTK+ is a project that aims to add GTK+
bindings to Octave by extending it, and build a GUI
for Octave around these features of GTK+. Our aims
are two fold.

1. Generating the GTK binding

1*] corresponding author [leela@nitt.edu]
Department of Computer Science and Engineering,
National Institute of Technology, Tiruchirapalli

2. Working on a Octave GUI

2 Overview of technology

The target API, GTK is written in C, whereas the
host language GNU [5] Octave, is interpreted. This
complicates things further, as we will see [sec 4]. We
show all our results on a GNU/Linux system running
Linux kernel 2.4, on a x86 processor.

To understand the relevance of Octave-GTK, and
the problem it solves, it is essential that the reader
be familiar with GNU Octave, and GTK technologies,
and the space that Octave-GTK is to fill.

2.1 GNU Octave

GNU Octave is high-level language, primarily in-
tended for numerical computations. It provides a
convenient command line interface for solving lin-
ear and nonlinear problems numericallyis how GNU
Octave[2] describes itself.

GNU Octave is a large project,with 146,875
lines of C++ code, few FORTRAN programs bor-
rowed from standard numeric libraries like [a-
pack,blas,fftlib,ranlib, and ODESSA, a lexical analyzer
and parser written in flex and Bison, an Octave in-
terpreter for the Octave language.

GNU Octave also supports an interpreted language
called octave, which has access to the whole lot of
octave libraries for number crunching. In fact much
of the octaves functionality itself is written in octave.

GNU Octave has capacity to solve Ordianry Differ-
ential Equations(ODE), perform symbolic comput-
ing, plot 2D and 3D graphs, and its basically a high
level computational tool for the scientist and engi-
neer. Also, special packages for Image, Signal, Audio
processing exist in Octave Forge[4].

Octave accommodates extensions, by using shared
libraries, dynamic loaded files that provide extra
functionality. This is similar to the plug in concept.

Octave can take a shared library and load all the sym-
bols(functions and variables) present in it, to extend
its[Octave’s] functionality to the user. Thus GNU
Octave package gives us the power to extend Octave
interpreter, and utilize the inbuilt computational rou-
tines, for other needs; say like GUI for scientific pro-
grams, where we cannot expect every GUI program-
mer to write his/her own Matrix routines, Plotting
functions et-al. This is where Octave-GTK hopes to
play the vital role, by bridging this gap.

2.2 GTK

GTK [Gimp Toolkit] is a cross platform object ori-
ented (0O0) GUI toolkit, written in C, as a collection
of several libraries glib , gdk,gdk-pizbuf, and gtk itself,
altogether nothing less than, 358,998 lines of code.

One of the design goals for writing GTK in C,
was that it would be easy for others to write lan-
guage bindings for scripting languages. Given the
fact that many scripting languages themselves are
implemented in C this is considered feasible, if not
easy.

2.3 Other GTK Bindings

Proof of the design is, seen in the number of language
bindings for GTK, from the languages like lisp, guile,
Ada,SLang, C++, C, Python, and Perl.

2.4 Octave-GTK

One see that Octave-GTK is a technically feasible
problem, trying to export the GTK API to be acessi-
ble from the GNU Octave runtime. As with the like
of GTK bindings, [sec 2.3] one can be convinced that
GTK binding code, can be written from the compiled
languages [C++], interpreted languages [list], or both
[Python]. Octave-GTK design and architecture will
be presented in the following sections.

3 Problem definition

Definition: To create a language binding for GTK
from Octave, to access GTK function from Octave
language and interpreter.The steps involved are

1. Translate Octave types to C, for access from
within GTK APL

2. Translate GTK C objects into Octave Objects
for access from Octave.

3. Make GTK API functions, accessible/callable
from octave language

4. Make Octave functions,both builtin & custom,
be callable from C, for use as callbacks.

4 Architecture

The specifications derived in [sec 3], dictate the archi-
tecture used to solve the problem. We have to make a
glue layer implemented for Octave interpreter as the
octave-gtk shared library. As shown in the [figure 7],
this octave-gtk library does all the work mentioned in
[sec 3]. This is our mechanism.

5 Prototype

We have made a proof -of-concept implementation of
the octave-gtk glue layer proposed. The image [figure
8], shows our first implementation. The section of
Octave code given below, produces the output in this
[figure 8].

#! /usr/bin/octave -q

function click_cb(widget)
wl=gtk_window_new("I Love GNU");
bl=gtk_button_new("Me Too");
gtk_container_add(wl,bl);
gtk_widget_show_all(wl);
g_signal_ connect (wl,"destroy",
"gtkwidgetdestroy") ;

g_signal_connect (wl,"enter_notify_event",

"gtkwidgetdestroy") ;
g_signal_connect (wl,"key_press_event",
"gtkwidgetdestroy") ;
end

function main()
printf ("Welcome to Octave-GTK+\n");
gtk_init () ;
w=gtk_window_new("Octave-GTK team.");
b=gtk_button_new("So What?");
gtk_container_add(w,b);
gtk_widget_show_all(w);

g_signal_ connect(b,"clicked","click_cb");
gtkmainquit");

g_signal_ connect(w,"destroy","

gtk_main() ;
end

main();

%octave-gtk demonstration.

We have loaded the glue code all at once by call-
ing gtk_init(), from the Octave runtime. This loads
Octave interpreter’s symbol table with all our glue
functions. Within the glue functions themseleves we
have a pattern of calling the target GTK functions.

5.1 Glue logic

1. Check, of arguments are valid
i.e dont take integer when object expected, et al

2. Translate Arguments
Convert Objects to pointers, string to char *

3. Call the GTK function

4. Return Arguments to Octave
Inverse of step 2. Convert pointers to Octave
Objects

/*
C Prototype
GtkWidget *gtk_button_new(const char *name);
*/
DEFUN_DLD (gtk_button_new,args,,
"creates a Button")
{
string ss;
long int x;
GtkWidget *w;

if (args.length() < 1)
{
std::cout<<"eg: gtkbuttonnew
(title)"<<std::endl;
return octave_value(1l);

}

ss=args(0) .string_value();

w=gtk_button_new_with_label
(ss.c_str());

x=(long int)w;

cout<<"Button created Created'"<<endl;

return octave_value((double)x);

First of all the we get the char name for the but-
ton from the octave interpreter and with in the glue
code,we check if the data supplied by the interpreter
is char string or not.After that is done we go to the
next level and create the button using the C func-
tion.After that the pointer to the button is returned
to the interpreter as octave_value.

5.2 Code Generation

Since all this process [sec 5.1] of glue logic is same for
all the functions called, we may have generalization
of the concept, and introduce code generators to do
the job of producing the glue code. This is nothing
new, as seen from various GTK bindings mentioned
in . For most functions this will work, when we give a
type-mapping between Octave types and correspond-
ing C types.

Type-mapping is helpful for representation of GTK
objects [sec 2.1], using custom designed Octave ob-
jects, by deriving from types like octave_base_scalar.
Thus, we can store pointers within a member of the
Octave object,so also its GTK attributes likes wid-
get name, type, properties can be stored. Now type-
mapping should be considered solved.

Concept of type-mapping is not always applicable
for all C constructs, where pointers to integers, might
mean returning a single variable, array or some type-
cast value. This, cannot be understood by the code-
generator, even with type-mapping; so in some cases
we have to provide manual overrides for the rest of
the functions, that have ambiguous type-mapping.

Ideal choices for code generation for the GTK API
as shown in [6] binding is Python language. For
feasibility of codegeneration for Octave, we experi-
mentally target the GD[8] library and produced the
[9] GD-Octave glue for Octave.

5.3 Implementation

In this prototype, we have not used custom octave
objects, no typemapping. This means, simply, we
store the GTK widgets, and pointers, in long
integers. Naturally this technique is non-portable
and user can easily crash the Octave interpreter, by
passing wrong pointer (often the cause of segmenta-
tion faults). There has been no type checking but the
other steps 3,4 of the [sec 5.1] have been followed. As
with the case of evolutionary software, we are in the
process of implementing the refined designs, detailed
earlier.

5.4 Callbacks

This presents one of the biggest challenges in the
problem. Calling an Octave function, that is a call-
back from the GTK environment. Every widget,
which needs a callback, stores within its member
variables, the name of the Octave function acting as
a callback for a particular event. An intermediate
generic callback is registered with the GTK system.
This intermediate function which is the callback from

the GTK side, extracts the name of Octave callback
function from the widget (we store it earlier), and
then uses Octave interpreter to evaluate that func-
tion using feval() .

Our method of implementing callbacks are heav-
ily dependent on the introspection capabilities offered
by GNU Octave. We will be using the Octave inter-
preter’s symbol tables, and function lists to findout
the callback and functions like feval() to evaluate the
function callbacks with necessary arguments.

6 Advantages

When the Octave-GTK code is complete, advantages
of this language Interoperability with Octave & C are
as follows.

1. Octave will have a GUI toolkit for users to work
with:
This means that newer, faster means of scien-
tific programs can be written with Octave, simi-
lar to other scripting languages that have taken
advantage of GTK. More over, people could do
faster prototyping with interpreted languages,
and Octave-GTK can become an Ideal RAD tool
for academics, and developers alike.

2. It is possible to write a GUI for Octave with Oc-
tave itself:
This is indeed an elegant solution, but we can-
not comment till the performance-time trade off
matches user satisfaction, but however it is still
a possibility.

3. The GNOME connection:
GNOME technologies like Bonobo, libgnomeui
could further be ported to the Octave language,
making Octave powerful like some general pur-
pose programming language. Unlikely, but pos-
sible. We could write components for GNOME
from Octave given this set of primitives.

4. Library Reuse:

An Octave library that offers, so much com-
putational routines, could well be used for sci-
entific computing, rather than re-implement it.
Similarly, it is unnecessary to rewrite a GUI
toolkit for Octave, when it is possible to use
GTK, which dovetails the need. Thus Octave-
GTK, will achieve the Library reuse, which sim-
ply means lesser code to write, maintain and
ship.

Elltll:lt,d".ru- Rumk imes GTE BunCime

Ootave-GTE — Ll-

Ehared Library GTE Library

Octave Li h::ft":f |_¢'—|

. Al
by Al lbacky
0 Iy | Evants |
Dt
Intarpratsr | |
A
[L
TS
jBotava | |
Calls g GTE Maim
Dotave GTE | 2 |
Erogram | Cells e
—= —

RBaturn Froa Call Fupctlon Call

Figure 1: Octave-GTK Architecture

7 Conclusion

Using Octave-Gtk it will be possible to have simpler
APT’s for scientific computing and and this will signif-
icantly reduce the effort in GUI development. More-
over Octave itself will empowered to compete with
proprietary alternatives. Octave-GTK will come into
being, and introduce a powerful, and free alternative.

8 References

1. www.gtk.org, GTK sources, documentation,
mailing lists [gtk-app-devel@lists.gnome.org]
and architecture.

2. John W Eaton created GNU Octave.
www.octave.org, Octave sources, documenta-
tion, Manual, mailing lists[graphics@octave.org]

3. Octave-GTK project
gtk.sourceforge.net/

http://octave-

4. Paul Kienzile maintains
http://octave.sourceforge.net

Octave Forge at

5. www.gnu.org GNU$ Not Unix is the project
aimed to make a free Unix like operating sys-
tem. Also GNU/Linux

6. www.pygtk.org , James Henstridge’s pygtk bind-
ing code,code generator, and design documen-
tataion.

7. SLang GTK binding by Michael S. Noble, bind-
ing code, documentation on code generator, de-
sign. http://space.mit.edu/ mnoble/slgtk

8. www.boutell.com/gd, GD, Graphics drawing li-
brary for PNG,JPEG,GIF,WBMP images

9. gd-Octave, A port of the GD library for GNU
Octave, by Muthiah Annamalai, Hemant Kumar
http://freshmeat.net /projects/gdoctave

Fils [ddiy -Bptyorn - Bffery Tmlr Intis Siguls jflp

Figure 2: Octave-GTK Prototype

